If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19y^2+6y-39=0
a = 19; b = 6; c = -39;
Δ = b2-4ac
Δ = 62-4·19·(-39)
Δ = 3000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3000}=\sqrt{100*30}=\sqrt{100}*\sqrt{30}=10\sqrt{30}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-10\sqrt{30}}{2*19}=\frac{-6-10\sqrt{30}}{38} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+10\sqrt{30}}{2*19}=\frac{-6+10\sqrt{30}}{38} $
| 6x-17=x-37 | | z/2+(-11)=-19 | | 2x+3×=13 | | 8•x=16 | | 10x=-9x+2 | | 2x-6+8-10=6-16+4 | | 8×x=16 | | 5.5=8-2t | | 3j−-3=12 | | 4.74x+3=21 | | -8=4/7w | | n/9+7=-3 | | 25x-150=-75 | | -2y=4/3 | | 2y-24=y+35 | | 4x=(5x-16) | | -7y/9=-21 | | 4(10x+6)=40x-2 | | y7−3=6 | | 208=145-x | | 5+n7=21 | | (10+u)=(u+10) | | (6w-2)=(6w+18) | | 4x+.5x=1000 | | 3+2*2x=7 | | 1/4n=36 | | 3+2.2x=7 | | |5x+2|=16+4x | | 9x=24.5-5x | | 2x-3=5x-9.x= | | 2x-3=5x-9.x | | -7x+2.5=28.5 |